2024 I 2023 I 2022 I 2021 I 2020

 

2024

  1. Shreyash M. Patil, K.V. Mani Krishna, Shashank Sharma, Sameehan S. Joshi, Madhavan Radhakrishnan, Rajarshi Banerjee, Narendra B. Dahotre,
    Thermo-mechanical process variables driven microstructure evolution during additive friction stir deposition of IN625, Additive Manufacturing, Volume 80, 2024, 103958, ISSN 2214-8604, https://doi.org/10.1016/j.addma.2024.103958

2023

  1. Radhakrishnan, M., McKinstry, M., Chaudhary, V., Nartu, M.S.K.K.Y., Krishna, K.M., Ramanujan, R.V., Banerjee, R. and Dahotre, N.B., 2023. Effect of chromium variation on evolution of magnetic properties in laser direct energy additively processed CoCrxFeNi alloys. Scripta Materialia226, p.115269. https://doi.org/10.1016/j.scriptamat.2022.115269

  2. Gaddam, S., Nartu, M.S.K.K.Y., Chesetti, A., Mantri, S.A., Mishra, R.S., Dahotre, N.B. and Banerjee, R., 2023. Hierarchical phase evolution during direct laser deposition of an in-situ Ni-NbC composite. Scripta Materialia226, p.115225. https://doi.org/10.1016/j.scriptamat.2022.115225

  3. Agrawal, P., Haridas, R.S., Agrawal, P. and Mishra, R.S., 2022. Deformation based additive manufacturing of a metastable high entropy alloy via Additive friction stir deposition. Additive Manufacturing, p.103282. https://doi.org/10.1016/j.addma.2022.103282

  4. Agrawal, P., Haridas, R.S., Yadav, S., Thapliyal, S., Dhal, A. and Mishra, R.S., 2022. Additive friction stir deposition of SS316: Effect of process parameters on microstructure evolution. Materials Characterization, p.112470. https://doi.org/10.1016/j.matchar.2022.112470

  5. Chesetti, A., Banerjee, S., Dasari, S., Nartu, M.S.K., Varahabhatla, S.M., Sharma, A., Ramakrishnan, A., Satko, D., Gorsse, S., Salem, A. and Banerjee, R., 2023. 3D printable low density B2+ BCC refractory element based complex concentrated alloy with high compressive strength and plasticity. Scripta Materialia225, p.115160. https://doi.org/10.1016/j.scriptamat.2022.115160

  6. Chaudhary, V., Nartu, M.S.K.K.Y., Dasari, S., Varahabhatla, S.M., Sharma, A., Radhakrishnan, M., Mantri, S.A., Gorsse, S., Dahotre, N.B., Ramanujan, R.V. and Banerjee, R., 2023. Magnetic and mechanical properties of additively manufactured Alx (CoFeNi) complex concentrated alloys. Scripta Materialia224, p.115149. https://doi.org/10.1016/j.scriptamat.2022.115149

  7. Shashank Sharma, K. V. Mani Krishna, Sameehan S. Joshi, M. Radhakrishnan, Selvamurugan Palaniappan, Saikumar Dussa, Rajarshi Banerjee, Narendra B. Dahotre, Laser based additive manufacturing of tungsten: Multi-scale thermo-kinetic and thermo-mechanical computational model and experiments, Acta Materialia, Volume 259, 2023, 119244, ISSN 1359-6454, https://doi.org/10.1016/j.actamat.2023.119244

  8. Christopher W. Haney, Hector R. Siller, Anthropo-fidelic behavior of elastic-plastic lattice structures, Polymer Testing, Volume 120, 2023, 107970, ISSN 0142-9418, https://doi.org/10.1016/j.polymertesting.2023.107970

  9. K. V. Mani Krishna, R. Madhavan, Mangesh V. Pantawane, Rajarshi Banerjee, Narendra B. Dahotre, Machine learning based de-noising of electron back scatter patterns of various crystallographic metallic materials fabricated using laser directed energy deposition, Ultramicroscopy, Volume 247, 2023, 113703, ISSN 0304-3991, https://doi.org/10.1016/j.ultramic.2023.113703

  10. A. Anantatamukala, K.V. Mani Krishna, Narendra B. Dahotre, Generative adversarial networks assisted machine learning based automated quantification of grain size from scanning electron microscope back scatter images, Materials Characterization, Volume 206, Part A, 2023, 113396, ISSN 1044-5803, https://doi.org/10.1016/j.matchar.2023.113396
     

2022

  1. Stephen, A., Bhoyate, S., Cao, P., Advincula, R., Dahotre, N., Jiang, Y. and Choi, W., 2022. 3D-printed flexible anode for high-performance zinc ion battery. MRS Communications, pp.1-8. https://doi.org/10.1557/s43579-022-00267-5

  2. Yang, T., Jin, Y., Dahotre, N.B. and Neogi, A., 2022. Non-Contacting Plant Health Monitoring via Ultrasound in Ambient Air. Biophysica2(4), pp.315-323. https://doi.org/10.3390/biophysica2040029

  3. Jiang, Y., Islam, M.N., He, R., Huang, X., Cao, P.F., Advincula, R.C., Dahotre, N., Dong, P., Wu, H.F. and Choi, W., 2022. Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Advanced Materials Technologies, p.2200492. https://doi.org/10.1002/admt.202200492

  4. Gu, Z., Sharma, S., Riley, D.A., Pantawane, M.V., Joshi, S.S., Fu, S. and Dahotre, N.B., 2022. A universal predictor-based machine learning model for optimal process maps in laser powder bed fusion process. Journal of Intelligent Manufacturing, pp.1-23. https://doi.org/10.1007/s10845-022-02004-0

  5. Dahotre, Narendra B., Mangesh V. Pantawane, and Shashank Sharma. Laser-Based Additive Manufacturing: Modeling, Simulation, and Experiments. John Wiley & Sons, 2022. 

  6. Nartu, M. S. K. K. Y., A. Chesetti, S. Dasari, A. Sharma, S. A. Mantri, N. B. Dahotre, and R. Banerjee. "Engineering heterogeneous microstructures in additively manufactured high entropy alloys for high strength and strain hardenability." Materials Science and Engineering: A 849 (2022): 143505. https://doi.org/10.1016/j.msea.2022.143505

  7. Joshi, Sameehan S., Shashank Sharma, M. Radhakrishnan, Mangesh V. Pantawane, Shreyash M. Patil, Yuqi Jin, Teng Yang, Daniel A. Riley, Rajarshi Banerjee, and Narendra B. Dahotre. "A multi modal approach to microstructure evolution and mechanical response of additive friction stir deposited AZ31B Mg alloy." Scientific Reports 12, no. 1 (2022): 1-15. https://doi.org/10.1038/s41598-022-17566-5

  8. Joshi, S.S., Patil, S.M., Mazumder, S., Sharma, S., Riley, D.A., Dowden, S., Banerjee, R. and Dahotre, N.B., 2022. Additive friction stir deposition of AZ31B magnesium alloy. Journal of Magnesium and Alloys. https://doi.org/10.1016/j.jma.2022.03.011

  9. Joshi, S.S., Sharma, A., Sharma, S., Mazumder, S., Pantawane, M.V., Mantri, S.A., Banerjee, R. and Dahotre, N.B., 2022. Cyclic Thermal Dependent Microstructure Evolution During Laser Directed Energy Deposition of H13 Steel. Transactions of the Indian Institute of Metals, pp.1-8. https://doi.org/10.1007/s12666-022-02544-2

  10. Haghnegahdar, L., Joshi, S.S. and Dahotre, N.B., 2022. From IoT-based cloud manufacturing approach to intelligent additive manufacturing: industrial Internet of Things—an overview. The International Journal of Advanced Manufacturing Technology, pp.1-18. https://doi.org/10.1007/s00170-021-08436-x

  11. Awasthi, P.D., Agrawal, P., Haridas, R.S., Mishra, R.S., Stawovy, M.T., Ohm, S. and Imandoust, A., 2022. Mechanical properties and microstructural characteristics of additively manufactured C103 niobium alloy. Materials Science and Engineering: A831, p.142183. https://doi.org/10.1016/j.msea.2021.142183

2021

  1. Yang, T., Jin, Y., Squires, B., Choi, T.Y., Dahotre, N.B. and Neogi, A., 2021. In-situ monitoring and ex-situ elasticity mapping of laser induced metal melting pool using ultrasound: Numerical and experimental approaches. Journal of Manufacturing Processes71, pp.178-186. https://doi.org/10.1016/j.jmapro.2021.08.031

  2. Mazumder, S., Pantawane, M.V., Joshi, S.S. and Dahotre, N.B., 2021. Electrochemical and thermal-induced degradation of additively manufactured titanium alloys: a review. Critical Reviews in Solid State and Materials Sciences, pp.1-40. https://doi.org/10.1080/10408436.2021.1989664

  3. Ho, Y.H., Mazumder, S., Pantawane, M.V. and Dahotre, N.B., 2021. Effect of Spatially Varying Thermokinetics on the Electrochemical Response of Laser Additively Manufactured Ti6Al4V. Advanced Engineering Materials, p.2100938. https://doi.org/10.1002/adem.202100938

  4. Mazumder, S., Pantawane, M.V. and Dahotre, N.B., 2021. Influence of high heating rates on evolution of oxides on directed laser energy additively fabricated IN718. npj Materials Degradation5(1), pp.1-8. https://doi.org/10.1038/s41529-021-00193-2

  5. Mantri, S.A., Nartu, M.S.K.K.Y., Dasari, S., Sharma, A., Agrawal, P., Salloom, R., Sun, F., Ivanov, E., Cho, K., McWilliams, B. and Srinivasan, S.G., 2021. Suppression and Reactivation of Transformation and Twinning Induced Plasticity in Laser Powder Bed Fusion Additively Manufactured Ti-10V-2Fe-3Al. Additive Manufacturing, p.102406. https://doi.org/10.1016/j.addma.2021.102406

  6. Thapliyal, S., Agrawal, P., Agrawal, P., Nene, S.S., Mishra, R.S., McWilliams, B.A. and Cho, K.C., 2021. Segregation engineering of grain boundaries of a metastable Fe-Mn-Co-Cr-Si high entropy alloy with laser-powder bed fusion additive manufacturing. Acta Materialia, p.117271. https://doi.org/10.1016/j.actamat.2021.117271

  7. Agrawal, P., Haridas, R.S., Thapliyal, S., Yadav, S., Mishra, R.S., McWilliams, B.A. and Cho, K.C., 2021. Metastable high entropy alloys: An excellent defect tolerant material for additive manufacturing. Materials Science and Engineering: A, p.142005. https://doi.org/10.1016/j.msea.2021.142005

  8. Agrawal, Priyanshi, Ravi Sankar Haridas, Surekha Yadav, Saket Thapliyal, Supreeth Gaddam, Ravi Verma, and Rajiv S. Mishra. "Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips." Additive Manufacturing (2021): 102259. https://doi.org/10.1016/j.addma.2021.102259

  9. Nartu, M.S.K.K.Y., Pole, M., Mantri, S.A., Haridas, R.S., Scharf, T.W., McWilliams, B., Cho, K., Mukherjee, S., Dahotre, N.B. and Banerjee, R., 2021. Process induced multi-layered Titanium–Boron carbide composites via additive manufacturing. Additive Manufacturing46, p.102156. https://doi.org/10.1016/j.addma.2021.102156

  10. Shittu, J., Sadeghilaridjani, M., Pole, M., Muskeri, S., Ren, J., Liu, Y., Tahoun, I., Arora, H., Chen, W., Dahotre, N. and Mukherjee, S., 2021. Tribo-corrosion response of additively manufactured high-entropy alloy. npj Materials Degradation5(1), pp.1-8. https://doi.org/10.1038/s41529-021-00177-2

  11. Nartu, M.S.K.K.Y., Dasari, S., Sharma, A., Mantri, S.A., Sharma, S., Pantawane, M.V., McWilliams, B., Cho, K., Dahotre, N.B. and Banerjee, R., 2021. Omega versus alpha precipitation mediated by process parameters in additively manufactured high strength Ti–1Al–8V–5Fe alloy and its impact on mechanical properties. Materials Science and Engineering: A, p.141627. https://doi.org/10.1016/j.msea.2021.141627

  12. Jin, Y., Wang, T., Krokhin, A., Choi, T.Y., Mishra, R.S. and Neogi, A., 2021. Ultrasonic Elastography for Nondestructive Evaluation of Dissimilar Material Joints. Journal of Materials Processing Technology, p.117301. https://doi.org/10.1016/j.jmatprotec.2021.117301

  13. Nartu, M.S.K.K.Y., Flannery, D., Mazumder, S., Mantri, S.A., Joshi, S.S., Ayyagari, A.V., McWilliams, B., Cho, K., Dahotre, N.B. and Banerjee, R., 2021. Influence of Process Parameters on Mechanical and Corrosion Behavior of DED-Processed Biomedical Ti-35Nb-7Zr-5Ta Alloy. JOM73(6), pp.1819-1827. https://doi.org/10.1007/s11837-021-04675-1

  14. Nartu, M.S.K.K.Y., Torgerson, T.B., Mantri, S.A., Banerjee, R. and Scharf, T.W., 2021. Directed energy deposition of Ni-Al-Cr-C composites: Microstructural evolution during solidification and wear. Additive Manufacturing42, p.102000. https://doi.org/10.1016/j.addma.2021.102000

  15. Pantawane, M.V., Sharma, S., Dasari, S., Mantri, S.A., Sharma, A., Banerjee, R., Banerjee, S. and Dahotre, N.B., 2021. Spatial Variation of Thermokinetics and Associated Microstructural Evolution in Laser Surface Engineered IN718: Precursor to Additive Manufacturing. Metallurgical and Materials Transactions A52(6), pp.2344-2360.

  16. Mantri, S.A., Dasari, S., Sharma, A., Alam, T., Pantawane, M.V., Pole, M., Sharma, S., Dahotre, N.B., Banerjee, R. and Banerjee, S., 2021. Effect of micro-segregation of alloying elements on the precipitation behaviour in laser surface engineered Alloy 718. Acta Materialia210, p.116844. https://doi.org/10.1007/s11661-021-06227-3

  17. Pantawane, M.V., Sharma, S., Sharma, A., Dasari, S., Banerjee, S., Banerjee, R. and Dahotre, N.B., 2021. Coarsening of martensite with multiple generations of twins in laser additively manufactured Ti6Al4V. Acta Materialia213, p.116954. https://doi.org/10.1016/j.actamat.2021.116954

  18. Pantawane, M.V., Yang, T., Jin, Y., Mazumder, S., Pole, M., Dasari, S., Krokhin, A., Neogi, A., Mukherjee, S., Banerjee, R. and Dahotre, N.B., 2021. Thermomechanically influenced dynamic elastic constants of laser powder bed fusion additively manufactured Ti6Al4V. Materials Science and Engineering: A811, p.140990. https://doi.org/10.1016/j.msea.2021.140990

  19. Nartu, M.S.K.K.Y., Dasari, S., Sharma, A., Chaudhary, V., Varahabhatla, S.M., Mantri, S.A., Ivanov, E., Ramanujan, R.V., Dahotre, N.B. and Banerjee, R., 2021. Reducing coercivity by chemical ordering in additively manufactured soft magnetic Fe–Co (Hiperco) alloys. Journal of Alloys and Compounds861, p.157998. https://doi.org/10.1016/j.jallcom.2020.157998

  20. Pantawane, M.V., Yang, T., Jin, Y., Joshi, S.S., Dasari, S., Sharma, A., Krokhin, A., Srinivasan, S.G., Banerjee, R., Neogi, A. and Dahotre, N.B., 2021. Crystallographic texture dependent bulk anisotropic elastic response of additively manufactured Ti6Al4V. Scientific Reports11(1), pp.1-10.  https://doi.org/10.1038/s41598-020-80710-6

  21. Wu, T.C., Joshi, S.S., Ho, Y.H., Pantawane, M.V., Sinha, S. and Dahotre, N.B., 2021. Microstructure and surface texture driven improvement in in-vitro response of laser surface processed AZ31B magnesium alloyJournal of Magnesium and Alloyshttps://doi.org/10.1016/j.jma.2020.11.002

  22. Ramirez-Cedillo, E., García-López, E., Ruiz-Huerta, L., Rodriguez, C.A. and Siller, H.R., 2021. Reusable unit process life cycle inventory (UPLCI) for manufacturing: laser powder bed fusion (L-PBF). Production Engineering, pp.1-16. https://doi.org/10.1007/s11740-021-01050-6

  23. Uddin, M.J., Ramirez-Cedillo, E., Mirshams, R.A. and Siller, H.R., 2021. Nanoindentation and electron backscatter diffraction mapping in laser powder bed fusion of stainless steel 316L. Materials Characterization174, p.111047. https://doi.org/10.1016/j.matchar.2021.111047

  24. Joshi, S.S., Sharma, S., Mazumder, S., Pantawane, M.V. and Dahotre, N.B., 2021. Solidification and microstructure evolution in additively manufactured H13 steel via directed energy deposition: Integrated experimental and computational approach. Journal of Manufacturing Processes68, pp.852-866. https://doi.org/10.1016/j.jmapro.2021.06.009

  25. Pantawane, M.V., Dasari, S., Mantri, S.A., Banerjee, R. and Dahotre, N.B., 2020. Rapid thermokinetics driven nanoscale vanadium clustering within martensite laths in laser powder bed fused additively manufactured Ti6Al4V. Materials Research Letters8(10), pp.383-389. https://doi.org/10.1080/21663831.2020.1772396

  26. Nartu, M.S.K.K.Y., Jagetia, A., Chaudhary, V., Mantri, S.A., Ivanov, E., Dahotre, N.B., Ramanujan, R.V. and Banerjee, R., 2020. Magnetic and mechanical properties of an additively manufactured equiatomic CoFeNi complex concentrated alloy. Scripta Materialia187, pp.30-36. https://doi.org/10.1016/j.scriptamat.2020.05.063

  27. Nartu, M.S.K.K.Y., Mantri, S.A., Pantawane, M.V., Ho, Y.H., McWilliams, B., Cho, K., Dahotre, N.B. and Banerjee, R., 2020. In situ reactions during direct laser deposition of Ti-B4C composites. Scripta Materialia183, pp.28-32. https://doi.org/10.1016/j.scriptamat.2020.03.021

  28. Chaudhary, V., Mantri, S.A., Ramanujan, R.V. and Banerjee, R., 2020. Additive manufacturing of magnetic materials. Progress in Materials Science114, p.100688. 
    https://doi.org/10.1016/j.pmatsci.2020.100688 

  29. Chaudhary, V., Yadav, N.M.S.K.K., Mantri, S.A., Dasari, S., Jagetia, A., Ramanujan, R.V. and Banerjee, R., 2020. Additive manufacturing of functionally graded Co–Fe and Ni–Fe magnetic materials. Journal of Alloys and Compounds823, p.153817. https://doi.org/10.1016/j.jallcom.2020.153817

  30. Mantri, S.A., Alam, T., Zheng, Y., Williams, J.C. and Banerjee, R., 2020. Influence of post deposition annealing on microstructure and properties of laser additively manufactured titanium copper alloys. Additive Manufacturing32, p.101067. https://doi.org/10.1016/j.addma.2020.101067

  31. Ho, Y.H., Man, K., Joshi, S.S., Pantawane, M.V., Wu, T.C., Yang, Y. and Dahotre, N.B., 2020. In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Bioactive Materials5(4), pp.891-901. https://doi.org/10.1016/j.bioactmat.2020.06.009

  32. Mazumder, S., Pantawane, M.V., Ho, Y.H. and Dahotre, N.B., 2020. Spatial response of laser powder bed additively manufactured Ti6Al4V to temperature variation of aqueous electrolyte. Applied Physics A126(11), pp.1-12. https://doi.org/10.1007/s00339-020-04082-4

  33. Pantawane, M.V., Ho, Y.H., Joshi, S.S. and Dahotre, N.B., 2020. Computational assessment of thermokinetics and associated microstructural evolution in laser powder bed fusion manufacturing of Ti6Al4V alloy. Scientific Reports10(1), pp.1-14. https://doi.org/10.1038/s41598-020-63281-4

  34. Jin, Y., Walker, E., Heo, H., Krokhin, A., Choi, T.Y. and Neogi, A., 2020. Nondestructive ultrasonic evaluation of fused deposition modeling based additively manufactured 3D-printed structures. Smart Materials and Structures29(4), p.045020. https://iopscience.iop.org/article/10.1088/1361-665X/ab74b9/meta

  35. Ramirez-Cedillo, E., Uddin, M.J., Sandoval-Robles, J.A., Mirshams, R.A., Ruiz-Huerta, L., Rodriguez, C.A. and Siller, H.R., 2020. Process planning of L-PBF of AISI 316L for improving surface quality and relating part integrity with microstructural characteristics. Surface and Coatings Technology396, p.125956. https://doi.org/10.1016/j.surfcoat.2020.125956

  36. Yang, T., Jin, Y., Choi, T.Y., Dahotre, N. and Neogi, A., 2020. Mechanically tunable ultrasonic metamaterial lens with a subwavelength resolution at long working distances for bioimaging. Smart Materials and Structures30(1), p.015022. https://iopscience.iop.org/article/10.1088/1361-665X/abcab0/meta

  37. Jin, Y., Yang, T., Heo, H., Krokhin, A., Shi, S.Q., Dahotre, N., Choi, T.Y. and Neogi, A., 2020. Novel 2D dynamic elasticity maps for inspection of anisotropic properties in fused deposition modeling objects. Polymers12(9), p.1966. https://doi.org/10.3390/polym12091966

  38. Heo, H., Jin, Y., Yang, D., Wier, C., Minard, A., Dahotre, N.B. and Neogi, A., 2021. Manufacturing and Characterization of Hybrid Bulk Voxelated Biomaterials Printed by Digital Anatomy 3D Printing. Polymers13(1), p.123. https://doi.org/10.3390/polym13010123

2020

  1. Kalakuntla, N., Bhatia, N., Patel, S., Joshi, S.S., Wu, T.C., Ho, Y.H. and Dahotre, N.B., 2020. Laser patterned hydroxyapatite surfaces on az31b magnesium alloy for consumable implant applications. Materialia11, p.100693. https://doi.org/10.1016/j.mtla.2020.100693

  2. Thapliyal, S., Nene, S.S., Agrawal, P., Wang, T., Morphew, C., Mishra, R.S., McWilliams, B.A. and Cho, K.C., 2020. Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturingAdditive Manufacturing36, p.101455. https://doi.org/10.1016/j.addma.2020.101455

  3. Agrawal, P., Thapliyal, S., Nene, S.S., Mishra, R.S., McWilliams, B.A. and Cho, K.C., 2020. Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing. Additive Manufacturing32, p.101098. https://doi.org/10.1016/j.addma.2020.101098

  4. Venkata, R.Y., Brown, N., Ting, D. and Kavi, K., 2020. Offensive and Defensive Perspectives in Additive Manufacturing Security. ICSEA 2020, p.85.

  5. Salloom, R., Joshi, S.S., Dahotre, N.B. and Srinivasan, S.G., 2020. Laser surface engineering of B4C/Fe nano composite coating on low carbon steel: experimental coupled with computational approach. Materials & Design190, p.108576. https://doi.org/10.1016/j.matdes.2020.108576

  6. Wall, M.T., Pantawane, M.V., Joshi, S., Gantz, F., Ley, N.A., Mayer, R., Spires, A., Young, M.L. and Dahotre, N., 2020. Laser-coated CoFeNiCrAlTi high entropy alloy onto a H13 steel die head. Surface and Coatings Technology387, p.125473.  https://doi.org/10.1016/j.surfcoat.2020.125473

  7. Ho, Y.H., Joshi, S.S., Wu, T.C., Hung, C.M., Ho, N.J. and Dahotre, N.B., 2020. In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Materials Science and Engineering: C109, p.110632. https://doi.org/10.1016/j.msec.2020.110632